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Response of an ensemble of noisy neuron models to a single input
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Spike timing precision in response to a subthreshold stimulation can be enhanced by noise in ensembles of
neurons@X. Pei, L. Wilkens, and F. Moss, Phys. Rev. Lett.77, 4679 ~1996!#. We elucidate the mechanism
underlying this phenomenon by computing the membrane potential distributions of ensembles of Hodgkin-
Huxley neuron models. For small noise amplitudes, the membrane potential distribution takes on a Gaussian
form centered on the resting potential, while for large fluctuations, there is a significant spread to lower
potentials. These two regimes are separated by a relatively narrow band where the distributions transit rapidly
from the Gaussian-like shapes to the spread ones. We argue that the optimal noise that maximizes the spike
timing precision is situated close to this boundary.@S1063-651X~99!02911-6#

PACS number~s!: 87.10.1e, 07.05.Mh
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I. INTRODUCTION

Trains of action potentials are the main carriers of inf
mation in nervous systems. Despite the large number of s
ies devoted to breaking the neural code, the detailed sch
of how neurons encode information into spike trains has
been completely elucidated yet. Mainly two hypotheses h
been put forth. One, referred to as ‘‘temporal coding,’’ a
sumes that information is coded into the time of discharg
The other, ‘‘rate coding,’’ argues that information is encod
into window-averaged mean firing rates~for a discussion see
@1#!. The prevailing view has been that the unreliability
individual neurons together with interference by noise c
alter spike timing so that temporal coding loses its efficien
in noisy conditions. The rate coding scheme is more rob
to such perturbations since it averages out their effect@2#.

By examining the response of an ensemble of Hodgk
Huxley ~HH! neuron models@3# to an excitatory post-
synaptic potential~EPSP!, Peiet al. @4# showed that, surpris
ingly, for subthreshold stimuli, the spike timing precision
maximal at an intermediate noise level. Their result sugg
that temporal coding can in fact be robust to noise, and e
be improved if the latter is tuned appropriately. The ma
purpose of the present study is to determine the esse
mechanisms underlying this effect of noise.

Two factors determine the spike timing precision:~a! the
distribution of the ‘‘states’’ of the units within the ensembl
~b! for a given state, the probability for the stimulus to evo
a discharge within some prescribed interval. The first fac
accounts for the inhomogeneity of the ensemble. The sec
factor stems from the variability in the discharge times of
units even when they are in similar states of excitability. T
variability is the result of the interplay between noise and
action potential generation mechanism. The focus of
present study is on the influence of the first factor on sp
timing precision. The second factor, that is the discha
probability and the distribution of the latency~i.e., the time
interval separating the onset of the input from the dischar!
of an HH model and its reduced version have been inve
gated in Ref.@5#.

In order to clarify the role of the ensemble inhomogene
on the spike timing, we compute the distribution of the me
brane potential of the units at the input arrival time. Start
PRE 601063-651X/99/60~6!/7235~4!/$15.00
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from these distributions, we compute the response to stim
of various size under two conditions: one in which the no
is maintained after the input arrival and the other in whi
the noise is suppressed. The second protocole eliminate
effect of noise on action potential generation, so that co
parison between the two schemes unveils the influence o
first factor.

II. MEMBRANE POTENTIAL DISTRIBUTION

We estimated numerically the stationary distribution
the state variables (V,m,h,n) of the HH model from simu-
lations ~for description see the Appendix!. We also intro-
duced an extra variablet ref that measures the time since i
last discharge. The discharge is defined as an upward cr
ing of a spike-detection thresholdVu550.0 mV by the
membrane potential, given that no such crossings occu
within 3 ms prior to it~i.e., t ref.3 ms). Figure 1 shows how
the distribution of the membrane potentialV varied with the
noise level. The membrane potential roughly reflects
level of excitability of the units~i.e., units with a larger
membrane potential are in general more excitable than th
with a smaller one!. With this respect, units witht ref
,3 ms andV.6.0 mV were not included in the distribu
tions because they would not contribute to the response t
input. Furthermore, some of these units are in the proces
the action potential so that they have large membrane po
tial values. Their inclusion in the distribution can thus gi
the impression that the ensemble is more excitable tha
really is.

The curves in the upper panel of Fig. 1 represent the m
value ~thick dashed curve! and the top and bottom limits o
the distributionV99 ~thick solid curves!, that is, 99% of the
distribution is below the upper thick solid lines and 99%
above the lower thick solid lines. Three regions can be d
tinguished. For low noise (s<1.5 mA/cm2) the width of
the distribution increases linearly. This regime correspo
to distributions that are similar to Gaussians~lower left panel
in Fig. 1!. As the noise is increased (1.5<s
<2.5 mA/cm2), the lower thick solid line abruptly shifts to
smaller values, indicating a marked widening of the me
brane potential distribution at this point~lower middle panel
7235 © 1999 The American Physical Society
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in Fig. 1!. This change is concurrent with the modification
the shape of the distribution itself, which is no longer clo
to a Gaussian. Finally at larger noise levels, the mean m
brane potential steadily decreases, while the distribu
spreads to lower values~lower right panel in Fig. 1! as at-
tested by the lowest thick solid lines. The upper thick so
line is bounded byVu56.0 mV because of the exclusion o
units with V.6.0 mV.

III. POST-STIMULUS TIME HISTOGRAM

We simulated the response of ensembles to a single E
and compute the corresponding post-stimulus time histog
~PSTH!. Each simulation was run twice, once with and on
without noise, starting from the same initial distribution co
responding to the stationary distribution at that particu
noise level. Comparison of the response of ensemble
which noise is turned off at the stimulus onset~henceforth
referred to as deterministic ensembles! with that of en-
sembles in which noise is maintained~henceforth referred to
as stochastic ensembles! highlights the role of the initial state
distribution. For deterministic ensembles, we refer to
noise intensity as that of the initial distribution.

Figure 2 represents examples of the PSTHs of determ
istic and stochastic ensembles. The onset of the stimula
is taken as the time reference. The two columns in Fig
illustrate the response of such ensembles to subthres
~left column! and suprathreshold~right column! stimuli @6#.

The PSTHs of both the deterministic~dashed lines! and
the stochastic~solid lines! ensembles resemble those in R
@4#. At low noise levels, the subthreshold stimulus evoke
weak response~upper left panel!. The peak height of this
response increases with the noise~middle left panel! up to

FIG. 1. Changes in the membrane potential distribution as
noise level is continuously increased for an ensemble ofN
510 000 HH units. Upper panel: Abscissa is noise intensity
(mA/cm2) and ordinate is voltage in~mV!. The thick solid curves
V99 show the top and bottom limits and the thick dashed cu
shows the mean of the distribution. Units withV.6.0 mV or t ref

,3.0 ms have been excluded. Three lower panels are the memb
potential distributions~containing all units! for s51, 2, and
3 mA/cm2 ~from left to right!. Abscissae: membrane potential
mV, ordinates, density in (mV)21.
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some optimal noise intensity, and then decays down~lower
left panel! as the noise is further increased. For suprathre
old stimulation, increasing noise merely reduces progr
sively the peak height of the PSTH~the three panels in the
right column of Fig. 2!.

The remarkable point is the similarity between the
sponse of the deterministic and the stochastic ensemble
addition to displaying qualitatively the same dependence
the noise intensity, there is also quantitative agreement
tween the two models, in that the width and height of t
PSTH are close, except for subthreshold stimulation at
noise levels. In this case, the stochastic ensemble produc
significantly larger response. Another noticeable differen
is that the stochastic ensemble responds systematically f
than the deterministic one, with the difference between
response times~measured, for example, as the difference b
tween the times at which the PSTHs reach their maxim!
growing with the noise. Examination of the responses of
dividual units revealed that this phenomenon is due to
shortening of the latency by noise@5#.

IV. SPIKE TIMING PRECISION

The propensity of the units to fire synchronously upon
arrival of the stimulation can be measured by the spike t
ing precision~STP! @4#. The STP, denoted byP is given by
P5PSTH

m /W, wherePSTH
m is the maximum value of the five

point moving average of the PSTH andW is the width at
PSTH

m /e.
As expected from the resemblance between the PSTH

the deterministic and stochastic ensembles, their STPs

e

e

ne FIG. 2. PSTHs of stochastic HH ensembles~solid lines! and that
of deterministic HH ensembles~dashed lines!. Abscissa is time~ms!
and ordinate is number of spikes~unitless!. The input amplitudes
are subthresholdA50.022 m*/cm2 ~left column! and suprathresh-
old 0.024 m*/cm2 ~right column!. The bin-size is 0.1 ms, and th
number of units isN520 000.
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display similar noise dependence. The panels in Fig. 3 s
the noise intensity versus the STP for subthreshold~upper
panel! and supratheshold~lower panel! stimulations for both
deterministic and stochastic ensembles.

The effect of noise on the STPs depicted in these pane
consistent with the results in Ref.@4#. For subthreshold
stimulation, the STP increases with the noise up to so
optimal noise level, and then decays down as the nois
further increased. Conversely, the STP for suprathresh
stimulation monotonously decays with the noise. The co
parison between the STPs of the deterministic and the
chastic ensembles confirms again the importance of the
fect of noise on the initial distribution on the overa
response of the ensembles. The differences between
STPs highlight the influence of the interplay between no
and action potential generation.

The notable difference between the STPs of the determ
istic and stochastic models is that the former is shifted
larger noise levels in comparison with the latter. This ho
for both subthreshold and suprathreshold stimulations.
main reason for this difference is that for subthreshold stim
lation, the stochastic ensemble has a larger response a
noise levels~upper left panel in Fig. 2!, so that the corre-
sponding STP rises more rapidly. But at larger noise lev
the peak of the PSTH of the deterministic ensemble reac
similar heights, while its width remains narrower there
leading to a larger STP for this system. For suprathresh
stimulation, mainly the latter phenomenon occurs, that is,
PSTH of the stochastic ensemble is wider than the determ
istic one. This, combined with the fact that the two ha
comparable peak heights~that of the deterministic being

FIG. 3. Spike timing precision of an ensemble of HH units
response to subthreshold stimuli~upper panel, stimulus amplitud
A50.016 and 0.022m*/cm2), and a suprathreshold stimulu
~lower panel, stimulus amplitudeA50.024 m*/cm2). Abscissa is
noise intensity (mA/cm2) and ordinate is precision@(ms)21#. The
number of units isN520 000 and the bin-size of the PSTH is 0
ms. The curves were provided for visual guidance.
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slightly larger!, yields a larger STP for the deterministic e
semble.

V. DISCUSSION

This study aimed to shed light onto the mechanisms
derlying the noise-induced enhancement of STP@4# to sub-
threshold inputs and its progressive degradation for supr
reshold inputs in noisy ensembles of neuron models. The
observation that cutting the noise at the stimulus onset d
not alter the response of the ensemble implies that the no
induced changes in the membrane potential distribution p
a central role in shaping the the response elicited by s
threshold as well as suprathreshold inputs. The follow
paragraphs clarify this role.

Schematically, the stationary states of ensembles can
divided into three regimes depending on the noise range
the first regime~low noise levels! the membrane potentia
distribution is Gaussian-like. In the second regime~interme-
diate noise levels!, the distribution abruptly departs from thi
shape by expanding towards lower membrane potential
ues. The third regime~large noise levels! follows this transi-
tion and is characaterized by a large proportion of hyper
larized units, i.e., with low membrane potentials.

Remarkably, this classification also corresponded to
influence of noise on the STP. Indeed, for subthresh
stimuli, the STP increased in the first regime and decaye
the third one. The optimal noise level maximizing the ST
corresponded to the transition between these regimes,
rected to take into account the extra variability due to
latency.

Phenomenologically, the relation between the membr
potential distribution and the STP can be understood in te
of the excitability of the ensemble. In the first regime, no
induced fluctuations bring some of the units closer to
firing threshold. These fluctuations induce little firing o
their own. Thus overall, a fraction of the units within th
ensemble is more excitable than at rest, while the sponta
ous noise-induced firing remains low. As noise is increa
within the range corresponding to the first regime, the sp
taneous firing remains low while the excitability of the e
semble increases: larger fractions of units evolve close
the firing threshold. This phenomenon, referred to as no
induced excitability, is responsible for the enhanced respo
in this range of noise intensities. As the noise is further
creased beyond the first regime, the membrane potential
tuations due to noise alone evoke discharges within the
semble. Thus at the arrival time of the input a fraction
units within the ensemble are in the refractory stage rec
ering from noise-induced firing. These units do not respo
to the input. Thus, noise-induced firing operates in anta
nism with noise-induced excitability, tending to reduce t
overall response of the ensemble. In the third regime w
the noise is large, this factor becomes dominant and the
sponse of the ensemble decreases. Thus, the maximum
sponse is attained when the two antagonistic processes
ance each other. In summary, we showed that the some
counterintuitive noise enhanced spike timing precision in
sponse to subthreshold stimulation@4# can be understood in
terms of the effect of noise on the membrane potential d
tribution and its implications on the overall excitability of th
ensemble.
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APPENDIX: THE HODGKIN-HUXLEY NEURON MODEL

The ensemble is a set of units in parallel. Units receive
same input and independent noise. All the spike trains
pooled at a summing center. The resulting train constitu
the output of the ensemble. The dynamics of thei th unit is
determined by the following system of differential equation

Cm

dVi

dt
5gNami

3hi~VNa2Vi !1gKni
4~VK2Vi !1gL~VL2Vi !

1gsyn~ t !~Vsyn2Vi !1j i~ t !,

dmi

dt
5am~Vi !2gm~Vi !mi ,

dhi

dt
5ah~Vi !2gh~Vi !hi ,

dni

dt
5an~Vi !2gn~Vi !ni , ~A1!

whereVi , mi , hi , and ni are the membrane potential, th
activation and inactivation of the sodium current, and
activation of the potassium current.VNa, VK , andVL are the
o-
e
re
s

:

e

reversal potentials of the sodium, potassium, and leak
rents, andgNa , gK , andgL are the corresponding maxima
conductances.j i(t) represents white Gaussian noise satis
ing E„j i(t)…50 andE„j i(t)j j (s)…5s2d(t2s). Vsyn is the
synaptic current reversal potential and the synaptic cond
tancegsyn(t) is set to zero prior to the onset of the stimul
at time t50 ms and varies as follows from then on@4#

gsyn~ t !5A
t

t0
expF12

t

t0
G , ~A2!

where A is the maximum input conductance andt0
52.0 ms is the characteristic time of the EPSP.

The auxiliary functionsam , ah , an , gm , gh , andgn are
given in Ref. @3#. Parameter values areCm51.0 mF/cm2,
gNa5120 m*/cm2, gK536 m*/cm2, gL50.3 m*/cm2, F
51, VNa5Vsyn5115 mV, VK5212 mV, and VL
510.613 mV. For these parameters the resting potentia
at V50 mV. Numerical simulations were carried out usin
the method in Ref.@7# adapted to take noise into accou
with a time step of 0.1 ms for the membrane potential dis
bution and 0.005 ms for the spike train. Controls run w
smaller time steps and the Euler method yielded similar
sults.
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