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Response of an ensemble of noisy neuron models to a single input
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Spike timing precision in response to a subthreshold stimulation can be enhanced by noise in ensembles of
neurons[X. Pei, L. Wilkens, and F. Moss, Phys. Rev. Let#, 4679(1996]. We elucidate the mechanism
underlying this phenomenon by computing the membrane potential distributions of ensembles of Hodgkin-
Huxley neuron models. For small noise amplitudes, the membrane potential distribution takes on a Gaussian
form centered on the resting potential, while for large fluctuations, there is a significant spread to lower
potentials. These two regimes are separated by a relatively narrow band where the distributions transit rapidly
from the Gaussian-like shapes to the spread ones. We argue that the optimal noise that maximizes the spike
timing precision is situated close to this boundd§1063-651X99)02911-9

PACS numbeg(s): 87.10+¢, 07.05.Mh

I. INTRODUCTION from these distributions, we compute the response to stimuli
Trains of action potentials are the main carriers of infor-of various size under two conditions: one in which the noise
mation in nervous systems. Despite the large number of studs maintained after the input arrival and the other in which
ies devoted to breaking the neural code, the detailed schentlee noise is suppressed. The second protocole eliminates the
of how neurons encode information into spike trains has no€ffect of noise on action potential generation, so that com-
been completely elucidated yet. Mainly two hypotheses ha\,earison between the two schemes unveils the influence of the
been put forth. One, referred to as “temporal coding,” as-first factor.
sumes that information is coded into the time of discharges.
The other, “rate coding,” argues that information is encoded Il. MEMBRANE POTENTIAL DISTRIBUTION
into window-averaged mean firing ratéer a discussion see
[1]). The prevailing view has been that the unreliability of We estimated numerically the stationary distribution of
individual neurons together with interference by noise carthe state variablesv,m,h,n) of the HH model from simu-
alter spike timing so that temporal coding loses its efficiencylations (for description see the AppendixWe also intro-
in noisy conditions. The rate coding scheme is more robusiuced an extra variablge; that measures the time since its
to such perturbations since it averages out their efelct last discharge. The discharge is defined as an upward cross-
By examining the response of an ensemble of Hodgkining of a spike-detection thresholif;=50.0 mV by the
Huxley (HH) neuron models[3] to an excitatory post- Mmembrane potential, given that no such crossings occurred
synaptic potential EPSP, Peiet al.[4] showed that, surpris- Within 3 ms prior to it(i.e.,t,r>3 ms). Figure 1 shows how
ingly, for subthreshold stimuli, the spike timing precision is the distribution of the membrane potentiavaried with the
maximal at an intermediate noise level. Their result suggestgoise level. The membrane potential roughly reflects the
that temporal coding can in fact be robust to noise, and evel@vel of excitability of the units(i.e., units with a larger
be improved if the latter is tuned appropriately. The mainmembrane potential are in general more excitable than those
purpose of the present study is to determine the essentigith a smaller ong With this respect, units witht,e
mechanisms underlying this effect of noise. <3 ms andvV>6.0 mV were not included in the distribu-
Two factors determine the spike timing precisi¢a; the  tions because they would not contribute to the response to an
distribution of the “states” of the units within the ensemble, input. Furthermore, some of these units are in the process of
(b) for a given state, the probability for the stimulus to evokethe action potential so that they have large membrane poten-
a discharge within some prescribed interval. The first factotial values. Their inclusion in the distribution can thus give
accounts for the inhomogeneity of the ensemble. The secoritie impression that the ensemble is more excitable than it
factor stems from the variability in the discharge times of thereally is.
units even when they are in similar states of excitability. This  The curves in the upper panel of Fig. 1 represent the mean
variability is the result of the interplay between noise and thevalue (thick dashed curveand the top and bottom limits of
action potential generation mechanism. The focus of théhe distributionVgg (thick solid curvey that is, 99% of the
present study is on the influence of the first factor on spikedistribution is below the upper thick solid lines and 99% is
timing precision. The second factor, that is the dischargeébove the lower thick solid lines. Three regions can be dis-
probability and the distribution of the latencie., the time  tinguished. For low noised<1.5 uA/lcm?) the width of
interval separating the onset of the input from the dischargethe distribution increases linearly. This regime corresponds
of an HH model and its reduced version have been investito distributions that are similar to Gaussidfmver left panel
gated in Ref[5]. in Fig. 1. As the noise is increased (Ew
In order to clarify the role of the ensemble inhomogeneity<2.5 uA/cm?), the lower thick solid line abruptly shifts to
on the spike timing, we compute the distribution of the mem-smaller values, indicating a marked widening of the mem-
brane potential of the units at the input arrival time. Startingbrane potential distribution at this poiffower middle panel
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FIG. 1. Changes in the membrane potential distribution as the § \
noise level is continuously increased for an ensemble Nof 5 200 '*\ ‘\
=10000 HH units. Upper panel: Abscissa is noise intensity in ! !
. i . ) . :
(wAlcn?) and ordinate is voltag_e |_(mV). The thlgk solid curves .G R 56 30.10 P 30 20
Vg9 show the top and bottom limits and the thick dashed curve time (ms) time (ms)

shows the mean of the distribution. Units witfr>6.0 mV ort,

<3.0 ms have been excluded. Three lower panels are the membrane FIG- 2. PSTHs of stochastic HH ensemblsslid lines and that
potential distributions(containing all units for =1, 2, and of deterministic HH ensemblddashed lines Abscissa is timéms)

3 wAlcm? (from left to right. Abscissae: membrane potential in and ordinate is number of spikéanitlesg. The input amplitudes
mV, ordinates, density in (mV)". are subthresholé=0.022 pu/cn? (left column and suprathresh-

old 0.024 pu/cn? (right column. The bin-size is 0.1 ms, and the

in Fig. 1. This change is concurrent with the modification of number of units i=20 000.

the shape of the distribution itself, which is no longer close

to a Gaussian. Finally at larger noise levels, the mean menfOmMe optimal noise intensity, and then decays dolewer
brane potential steadily decreases, while the distributiof€ft Pane) as the noise is further increased. For suprathresh-
spreads to lower valuegower right panel in Fig. Las at- o_Id stimulation, increasing noise merely reduces progres-
tested by the lowest thick solid lines. The upper thick solidSively the peak height of the PSTithe three panels in the

line is bounded by/,=6.0 mV because of the exclusion of fight column of Fig. 2. .
units withV>6.0 mVv. The remarkable point is the similarity between the re-

sponse of the deterministic and the stochastic ensembles. In
addition to displaying qualitatively the same dependence on
Ill. POST-STIMULUS TIME HISTOGRAM the noise intensity, there is also quantitative agreement be-

. . een the two models, in that the width and height of the
We simulated the response of ensembles to a single EP : ?
: . , : STH are close, except for subthreshold stimulation at low
and compute the corresponding post-stimulus time hIStOgranr?oise levels. In this case, the stochastic ensemble produces a
(PSTH. Each simulation was run twice, once with and once . ~._. ) ’ . P
. . . T significantly larger response. Another noticeable difference
without noise, starting from the same initial distribution cor- ; . .
. . S . is that the stochastic ensemble responds systematically faster
responding to the stationary distribution at that particular,

; X than the deterministic one, with the difference between the
noise level. Comparison of the response of ensembles in

which noise is turned off at the stimulus ongkenceforth {\?vse%?lnfﬁe“?rﬁgzeaiswﬁiihf?;sxsgﬁlues, ?:;2;? ?Aféirer;];;ir?g
referred to as deterministic ensemblesith that of en-

sembles in which noise is maintainéeenceforth referred to g_ro_wing Wit.h the noise. Examination of the responses of in-
. o L ividual units revealed that this phenomenon is due to the

as stochastic ensemb)dsghlights the role of the initial state shortening of the latency by noigs]
distribution. For deterministic ensembles, we refer to the '
noise intensity as that of the initial distribution.

Figure 2 represents examples of the PSTHs of determin- IV. SPIKE TIMING PRECISION
istic and stochastic ensembles. The onset of the stimulation
is taken as the time reference. The two columns in Fig. 2 The propensity of the units to fire synchronously upon the
illustrate the response of such ensembles to subthreshofifrival of the stimulation can be measured by the spike tim-
(left column and suprathresholttight column stimuli [6].  ing precision(STP [4]. The STP, denoted by is given by

The PSTHSs of both the deterministidashed lingsand ~ P=Pgy/W, wherePgr is the maximum value of the five-
the stochasti¢solid lineg ensembles resemble those in Ref. point moving average of the PSTH aMi is the width at
[4]. At low noise levels, the subthreshold stimulus evokes &P ay,/e.
weak responséupper left pangl The peak height of this As expected from the resemblance between the PSTHs of
response increases with the noiseiddle left panel up to  the deterministic and stochastic ensembles, their STPs also
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150 - - - slightly largey, yields a larger STP for the deterministic en-
O hoiee semble.
c 100 :,*/ T . s \*“;{‘ ) | V. DISCUSSION
o H M L
8 ! TR This study aimed to shed light onto the mechanisms un-
£ 50 derlying the noise-induced enhancement of $4Pto sub-
threshold inputs and its progressive degradation for suprath-
reshold inputs in noisy ensembles of neuron models. The key
/ observation that cutting the noise at the stimulus onset does
0 not alter the response of the ensemble implies that the noise-
400 induced changes in the membrane potential distribution play
a central role in shaping the the response elicited by sub-
300 threshold as well as suprathreshold inputs. The following
g paragraphs clarify this role.
2 200 Schematically, the stationary states of ensembles can be
2 divided into three regimes depending on the noise range. In
the first regime(low noise levels the membrane potential
100 distribution is Gaussian-like. In the second regitimgerme-
diate noise leve)s the distribution abruptly departs from this
0, : 1 — : 3 shape by expanding towards lower membrane potential val-
noise level (u Alem?) ues. The third regimédarge noise leve)sfollows this transi-

tion and is characaterized by a large proportion of hyperpo-

FIG. 3. Spike timing precision of an ensemble of HH units in |arized units, i.e., with low membrane potentials.
response to subthreshold stimtlipper panel, stimulus amplitude  Remarkably, this classification also corresponded to the
A=0.016 and 0.022uuv/cn?), and a suprathreshold stimulus jnfluence of noise on the STP. Indeed, for subthreshold
(lower panel, stimulus amplituda=0.024 :“U/,C,mz)- Abscissa is  stimulj, the STP increased in the first regime and decayed in
noise intensity (tA/cm?) and ordinate is precisiof{ms) ']. The  he third one. The optimal noise level maximizing the STP
number of units isN=20000 and the bin-size of the PSTH is 0.1 - rasnonded to the transition between these regimes, cor-
ms. The curves were provided for visual guidance. rected to take into account the extra variability due to the

latency.

display similar noise dependence. The panels in Fig. 3 show Phenomenologically, the relation between the membrane
the noise intensity versus the STP for subthresHalgber potential distribution and the STP can be understood in terms
pane) and suprathesholdower panel stimulations for both  of the excitability of the ensemble. In the first regime, noise
deterministic and stochastic ensembles. induced fluctuations bring some of the units closer to the

The effect of noise on the STPs depicted in these panels f&ing threshold. These fluctuations induce little firing on
consistent with the results in Ref4]. For subthreshold their own. Thus overall, a fraction of the units within the
stimulation, the STP increases with the noise up to somensemble is more excitable than at rest, while the spontane-
optimal noise level, and then decays down as the noise isus noise-induced firing remains low. As noise is increased
further increased. Conversely, the STP for suprathresholdithin the range corresponding to the first regime, the spon-
stimulation monotonously decays with the noise. The comtaneous firing remains low while the excitability of the en-
parison between the STPs of the deterministic and the stsemble increases: larger fractions of units evolve closer to
chastic ensembles confirms again the importance of the ethe firing threshold. This phenomenon, referred to as noise
fect of noise on the initial distribution on the overall induced excitability, is responsible for the enhanced response
response of the ensembles. The differences between tlhe this range of noise intensities. As the noise is further in-
STPs highlight the influence of the interplay between noisereased beyond the first regime, the membrane potential fluc-
and action potential generation. tuations due to noise alone evoke discharges within the en-

The notable difference between the STPs of the determirsemble. Thus at the arrival time of the input a fraction of
istic and stochastic models is that the former is shifted taunits within the ensemble are in the refractory stage recov-
larger noise levels in comparison with the latter. This holdsering from noise-induced firing. These units do not respond
for both subthreshold and suprathreshold stimulations. Thé the input. Thus, noise-induced firing operates in antago-
main reason for this difference is that for subthreshold stimunism with noise-induced excitability, tending to reduce the
lation, the stochastic ensemble has a larger response at lawverall response of the ensemble. In the third regime when
noise levels(upper left panel in Fig. 2 so that the corre- the noise is large, this factor becomes dominant and the re-
sponding STP rises more rapidly. But at larger noise levelssponse of the ensemble decreases. Thus, the maximum re-
the peak of the PSTH of the deterministic ensemble reachesponse is attained when the two antagonistic processes bal-
similar heights, while its width remains narrower therebyance each other. In summary, we showed that the somewhat
leading to a larger STP for this system. For suprathresholdounterintuitive noise enhanced spike timing precision in re-
stimulation, mainly the latter phenomenon occurs, that is, theponse to subthreshold stimulatipf] can be understood in
PSTH of the stochastic ensemble is wider than the determirterms of the effect of noise on the membrane potential dis-
istic one. This, combined with the fact that the two havetribution and its implications on the overall excitability of the
comparable peak heightdéhat of the deterministic being ensemble.
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APPENDIX: THE HODGKIN-HUXLEY NEURON MODEL reversal potentials of the sodium, potassium, and leak cur-
The ensemble is a set of units in parallel. Units receive théents’ andjya, gg, andg, are th? correqundmg_ max'”?a'
same input and independent noise. All the spike trains argonductancegi(t) represents white ZGau35|an noise satisfy-

Ihg E(£i(1))=0 andE(£i(t)§;(s))=0°8(t—s). Vy, is the

pooled at a summing center. The resulting train Cor]Stm“'te%ynaptic current reversal potential and the synaptic conduc-

the output of the ensemble. The dynamics of treunit is tancegs,(t) is set to zero prior to the onset of the stimulus
determined by the following system of differential equations: . .. Ysy op
at timet=0 ms and varies as follows from then pf

Congp = Ina i (Via= Vi) + G (V= Vi) + gL (VL = V) ( (
gsyn(t)=At—exp{1— t—}, (A2)
+gsyn(t)(vsyn_vi)+§i(t)r 0 0

dm where A is the maximum input conductance ang

g~ am(V) = ym(Vi)m;, =2.0 ms is the characteristic time of the EPSP.
The auxiliary functionsy,,, an, @,, ¥m, ¥n,» andy, are
dh given in Ref.[3]. Parameter values a@,=1.0 uF/cnt,
—— =, (V) = y(V)h;, One= 120 mu/en?, ge=36 mu/cn?, g, =0.3 mu/cn?, &
dt =1, Vna=Ven=115 mV, Vy=—12 mV, and V_

=10.613 mV. For these parameters the resting potential is
i _ atV=0 mV. Numerical simulations were carried out using
ar - VT yVon, (A1) the method in Ref[7] adapted to take noise into account
with a time step of 0.1 ms for the membrane potential distri-
whereV;, m;, h;, andn; are the membrane potential, the bution and 0.005 ms for the spike train. Controls run with
activation and inactivation of the sodium current, and thesmaller time steps and the Euler method yielded similar re-
activation of the potassium curreMy,, Vi, andV, are the  sults.
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